
GCPC 2019
Presentation of solutions

GCPC 2019 Solutions



Jury and Testers
Thanks to the jury:

Paul Wild (FAU)
Michael Baer (FAU)
Alexander Dietsch (FAU)
Philipp Reger (FAU)
Gregor Schwarz (TUM)

Tobias Meggendorfer
(TUM)
Christian Müller (TUM)
Gregor Behnke (Ulm)
Julian Baldus (UdS)

Thanks to our test readers:

Bakhodir Ashirmatov
(GAU)

Stefan Kraus (FAU)

Simon Rainer (FAU)
Alexander Raß (FAU)
Stefan Toman (Google)

And many thanks to all the volunteers here
and at all other contest sites!

GCPC 2019 Solutions



Statistics

0 50 100 150 200 250 300
0

20

40

60

80

100

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

GCPC 2019 Solutions



Statistics

0 50 100 150 200 250 300
0

20

40

60

80

100

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

GCPC 2019 Solutions



J – Jazz Enthusiast

0 50 100 150 200 250 300
0

10

20

30

40

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Philipp Reger GCPC 2019 Solutions



J – Jazz Enthusiast

Problem
Given the n song lengths of a playlist (in m:ss format) and a
crossfade of c seconds, how long does it take to listen to the entire
playlist (in hh:mm:ss format)?

Solution
Convert m:ss input lengths into (only) seconds.
Subtract (n − 1) · c seconds.
Convert to hh:mm:ss format.
Careful: 1:00 minus 10 seconds should not become 1:-10!

Problem Author: Philipp Reger GCPC 2019 Solutions



J – Jazz Enthusiast

Problem
Given the n song lengths of a playlist (in m:ss format) and a
crossfade of c seconds, how long does it take to listen to the entire
playlist (in hh:mm:ss format)?

Solution
Convert m:ss input lengths into (only) seconds.
Subtract (n − 1) · c seconds.
Convert to hh:mm:ss format.
Careful: 1:00 minus 10 seconds should not become 1:-10!

Problem Author: Philipp Reger GCPC 2019 Solutions



A – Assessing Genomes

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Tobias Meggendorfer GCPC 2019 Solutions



A – Assessing Genomes

Problem
Given two sets of n DNA strands, determine their repetition score
(length of the smallest repeating substring). Then, find a perfect
matching, minimising the squared difference of the matched pairs’
repetition scores.

Two sub-problems: (i) Repetition score, (ii) Matching

Problem Author: Tobias Meggendorfer GCPC 2019 Solutions



A – Assessing Genomes

Problem
Given two sets of n DNA strands, determine their repetition score
(length of the smallest repeating substring). Then, find a perfect
matching, minimising the squared difference of the matched pairs’
repetition scores.

Two sub-problems: (i) Repetition score, (ii) Matching

Problem Author: Tobias Meggendorfer GCPC 2019 Solutions



A – Assessing Genomes

Solution (i) Repetition score
Simple brute-force approach sufficient.
Better: simplification, based on the following observations:

1 A string consists of the same pattern repeated multiple times if
and only if the string is a non-trivial rotation of itself.

2 If x and y are strings of the same length, then x is a rotation
of y if and only if x is a substring of yy.

Pseudocode: score = (s + s).find(s, 1, 2 · len(s)− 1)

Solution (ii) Matching
Use the Hungarian method (also called Munkres algorithm)
for optimal matching (rather complex, but O(n3)).
Better: Sorting and matching yields minimal Euclidean
distance in O(n log n).

Problem Author: Tobias Meggendorfer GCPC 2019 Solutions



A – Assessing Genomes

Solution (i) Repetition score
Simple brute-force approach sufficient.
Better: simplification, based on the following observations:

1 A string consists of the same pattern repeated multiple times if
and only if the string is a non-trivial rotation of itself.

2 If x and y are strings of the same length, then x is a rotation
of y if and only if x is a substring of yy.

Pseudocode: score = (s + s).find(s, 1, 2 · len(s)− 1)

Solution (ii) Matching
Use the Hungarian method (also called Munkres algorithm)
for optimal matching (rather complex, but O(n3)).
Better: Sorting and matching yields minimal Euclidean
distance in O(n log n).

Problem Author: Tobias Meggendorfer GCPC 2019 Solutions



M – Move & Meet

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Philipp Reger GCPC 2019 Solutions



M – Move & Meet

Problem
Two players are on a grid, and each has to move a certain number
of times. Each move is to an adjacent cell (no diagonals, no
staying in place). Determine a cell they can both end up on after
their move, or state that there is none.

Solution
If abs(x1 − x2) + abs(y1 − y2) > d1 + d2, the players are too
far away from each other -> impossible.
Each move changes the player’s x or y coordinate by 1.
Therefore, x1 + y1 + d1 ≡ x2 + y2 + d2 mod 2 must be
satisfied, otherwise impossible.
No other condition leads to an impossible.

Problem Author: Philipp Reger GCPC 2019 Solutions



M – Move & Meet

Problem
Two players are on a grid, and each has to move a certain number
of times. Each move is to an adjacent cell (no diagonals, no
staying in place). Determine a cell they can both end up on after
their move, or state that there is none.

Solution
If abs(x1 − x2) + abs(y1 − y2) > d1 + d2, the players are too
far away from each other -> impossible.
Each move changes the player’s x or y coordinate by 1.
Therefore, x1 + y1 + d1 ≡ x2 + y2 + d2 mod 2 must be
satisfied, otherwise impossible.
No other condition leads to an impossible.

Problem Author: Philipp Reger GCPC 2019 Solutions



M – Move & Meet

Finding a valid target cell
Consider the smaller of the two ranges. The corner closest to the
other player’s starting point is a valid cell.

Problem Author: Philipp Reger GCPC 2019 Solutions



E – Election Meddling

0 50 100 150 200 250 300
0

2

4

6

8

10

12

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Gregor Behnke GCPC 2019 Solutions



E – Election Meddling

Problem
Given an election with voting districts and majority rule, how many
voters have to be bribed such that our party wins a majority of
districts?

Solution
For each district simulate how many votes are needed to
achieve majority by taking one vote at a time from the
currently highest voted party and adding it to our total.
Greedily take the districts that need the fewest votes until our
party has won the majority of districts.
Can be sped up by taking enough votes at a time from the
currently highest voted parties until they are equal to the next
highest party. Repeat until our party has the majority of votes.

Problem Author: Gregor Behnke GCPC 2019 Solutions



E – Election Meddling

Problem
Given an election with voting districts and majority rule, how many
voters have to be bribed such that our party wins a majority of
districts?

Solution
For each district simulate how many votes are needed to
achieve majority by taking one vote at a time from the
currently highest voted party and adding it to our total.
Greedily take the districts that need the fewest votes until our
party has won the majority of districts.

Can be sped up by taking enough votes at a time from the
currently highest voted parties until they are equal to the next
highest party. Repeat until our party has the majority of votes.

Problem Author: Gregor Behnke GCPC 2019 Solutions



E – Election Meddling

Problem
Given an election with voting districts and majority rule, how many
voters have to be bribed such that our party wins a majority of
districts?

Solution
For each district simulate how many votes are needed to
achieve majority by taking one vote at a time from the
currently highest voted party and adding it to our total.
Greedily take the districts that need the fewest votes until our
party has won the majority of districts.
Can be sped up by taking enough votes at a time from the
currently highest voted parties until they are equal to the next
highest party. Repeat until our party has the majority of votes.

Problem Author: Gregor Behnke GCPC 2019 Solutions



I – Insertion Order

0 50 100 150 200 250 300
0

5

10

15

20

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Paul Wild GCPC 2019 Solutions



I – Insertion Order

Problem
Insert the numbers {1, . . . , n} into an empty binary search tree in
such an order that the final tree has height exactly k.

Solution
A solution exists if and only if k ≤ n < 2k .
First, build a binary tree with n nodes and height k:

Start with a degenerate tree that is just a path of length k.
Then add nodes, making sure not to exceed height k.

Label the tree nodes 1, . . . , n from left to right.
Output the labels from top to bottom.
Many other approaches are possible.

Problem Author: Paul Wild GCPC 2019 Solutions



I – Insertion Order

Problem
Insert the numbers {1, . . . , n} into an empty binary search tree in
such an order that the final tree has height exactly k.

Solution
A solution exists if and only if k ≤ n < 2k .
First, build a binary tree with n nodes and height k:

Start with a degenerate tree that is just a path of length k.
Then add nodes, making sure not to exceed height k.

Label the tree nodes 1, . . . , n from left to right.
Output the labels from top to bottom.
Many other approaches are possible.

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Problem
Write a Tetris AI that is able to clear at least one row.

Insight
In this simplified game it is not possible to slide pieces under
those already placed.
So if the first piece is an S or Z, it becomes impossible to clear
the first row.
However, with the right orientation of pieces, it becomes easy
to clear the second row instead:

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Problem
Write a Tetris AI that is able to clear at least one row.

Insight
In this simplified game it is not possible to slide pieces under
those already placed.
So if the first piece is an S or Z, it becomes impossible to clear
the first row.
However, with the right orientation of pieces, it becomes easy
to clear the second row instead:

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Solution
Build the second row from left to right, always rotating the
pieces appropriately.

If the current piece is too wide, drop it on the left instead.

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Solution
Build the second row from left to right, always rotating the
pieces appropriately.

If the current piece is too wide, drop it on the left instead.

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Solution
Build the second row from left to right, always rotating the
pieces appropriately.

If the current piece is too wide, drop it on the left instead.

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Solution
Build the second row from left to right, always rotating the
pieces appropriately.

If the current piece is too wide, drop it on the left instead.

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Solution
Build the second row from left to right, always rotating the
pieces appropriately.
If the current piece is too wide, drop it on the left instead.

Problem Author: Paul Wild GCPC 2019 Solutions



G – Game of Falling Blocks

Solution
Build the second row from left to right, always rotating the
pieces appropriately.
If the current piece is too wide, drop it on the left instead.

Problem Author: Paul Wild GCPC 2019 Solutions



F – Final Standings

0 50 100 150 200 250 300
0

2

4

6

8

10

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Gregor Behnke GCPC 2019 Solutions



F – Final Standings

Problem
Given a frozen contest scoreboard, find the probability that your
team won, assuming you know for each pending submission the
probability that it was accepted.

Solution
For a team i and number of problems k, let f (i , k) be the
probability that the team solved exactly k problems.
The values of f (i , k) can be computed with dynamic
programming (DP): consider the problems one at a time and
update the probabilities.
For each team, find the probability that it does not solve more
problems than you.
The final answer is the product of those probabilities.

Problem Author: Gregor Behnke GCPC 2019 Solutions



F – Final Standings

Problem
Given a frozen contest scoreboard, find the probability that your
team won, assuming you know for each pending submission the
probability that it was accepted.

Solution
For a team i and number of problems k, let f (i , k) be the
probability that the team solved exactly k problems.
The values of f (i , k) can be computed with dynamic
programming (DP): consider the problems one at a time and
update the probabilities.
For each team, find the probability that it does not solve more
problems than you.
The final answer is the product of those probabilities.

Problem Author: Gregor Behnke GCPC 2019 Solutions



B – Bouldering

0 50 100 150 200 250 300
0

2

4

6

8

10

12

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Christian Müller GCPC 2019 Solutions



B – Bouldering

Problem
Scale a bouldering wall without running out of stamina.

Observation
s, the required stamina, is at most h × w × 9 = 5 625

Problem Author: Christian Müller GCPC 2019 Solutions



B – Bouldering

Problem
Scale a bouldering wall without running out of stamina.

Observation
s, the required stamina, is at most h × w × 9 = 5 625

Problem Author: Christian Müller GCPC 2019 Solutions



B – Bouldering

Solution
Build graph nodes from the reachable holds of the wall
Copy every node s times to count the remaining stamina at
this hold.
For an edge from hold u to v taking t units of stamina, insert
an edge from any copy of node u to the copy of node v with
exactly t less stamina remaining.
Use Dijkstra’s algorithm for shortest paths.

Problem Author: Christian Müller GCPC 2019 Solutions



C – Colourful Chameleons

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Gregor Schwarz GCPC 2019 Solutions



C – Colourful Chameleons

Problem
Given chameleons of n different colours, determine the minimal
number of breeding steps necessary so that all chameleons have the
same colour c. A single breeding step transforms n− 1 chameleons
of pairwise distinct colours to y chameleons of the missing colour.

Problem Author: Gregor Schwarz GCPC 2019 Solutions



C – Colourful Chameleons

Solution
Let z = xi − xj be the difference between the number
chameleons of the ith and jth colour.
If colour k is bred, then z does not change.
If colour i or j is bred, then z changes by y + 1.
Consequence: Initially, all xi (except for xc) must leave the
same remainder modulo y + 1.
At least maxi 6=c xi breeding steps necessary.
Due to the constraints, at most maxi 6=c xi breeding steps
necessary.
Compute the total number of chameleons in the end using the
number of breeding steps.

Problem Author: Gregor Schwarz GCPC 2019 Solutions



K – Keeping the Dogs Out

0 50 100 150 200 250 300
0

2

4

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Julian Baldus GCPC 2019 Solutions



K – Keeping the Dogs Out

Problem
Given quadratic pieces whose side lengths are powers of two. Find
a and b so that they can be arranged in a rectangle of size a × b.

Solution
Calculate sum of area of all pieces
Assume a ≤ b and try out all possible a with a simple loop.
Check if all pieces of size ≥ 2i fit, for decreasing i :

Round a and b down to multiples of 2i .
Calculate area sum of all pieces of size ≥ 2i .
If the sum is larger than the rounded-down rectangle, a
rectangle of size a × b is not possible.

If the previous check did not find any conflict, it is always
possible to arrange the pieces in a rectangle of size a × b.

Problem Author: Julian Baldus GCPC 2019 Solutions



K – Keeping the Dogs Out

Problem
Given quadratic pieces whose side lengths are powers of two. Find
a and b so that they can be arranged in a rectangle of size a × b.

Solution
Calculate sum of area of all pieces
Assume a ≤ b and try out all possible a with a simple loop.
Check if all pieces of size ≥ 2i fit, for decreasing i :

Round a and b down to multiples of 2i .
Calculate area sum of all pieces of size ≥ 2i .
If the sum is larger than the rounded-down rectangle, a
rectangle of size a × b is not possible.

If the previous check did not find any conflict, it is always
possible to arrange the pieces in a rectangle of size a × b.

Problem Author: Julian Baldus GCPC 2019 Solutions



D – Dungeon Crawler

0 50 100 150 200 250 300
0

2

4

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Michael Baer GCPC 2019 Solutions



D – Dungeon Crawler

Problem
Check if two edge-labelled graphs (Map and Level) are identical
( Graph isomorphism for special graphs).

Solution
Traverse Level in DFS order to obtain the complete graph
(usual backtracking with explicit Walk instructions emitted).
Find a bijective mapping between nodes in Map and Level:

For each node in Map, traverse Map and Level in parallel to
construct a mapping.
Detect inconsistencies in mappings (different edges for a node,
non-bijective mapping, ...).

Number of remaining mappings determines the result.
Pitfalls: All nodes have the same outgoing edges, but still a
unique mapping is possible; Level can be really large.

Problem Author: Michael Baer GCPC 2019 Solutions



D – Dungeon Crawler

Problem
Check if two edge-labelled graphs (Map and Level) are identical
( Graph isomorphism for special graphs).

Solution
Traverse Level in DFS order to obtain the complete graph
(usual backtracking with explicit Walk instructions emitted).
Find a bijective mapping between nodes in Map and Level:

For each node in Map, traverse Map and Level in parallel to
construct a mapping.
Detect inconsistencies in mappings (different edges for a node,
non-bijective mapping, ...).

Number of remaining mappings determines the result.
Pitfalls: All nodes have the same outgoing edges, but still a
unique mapping is possible; Level can be really large.

Problem Author: Michael Baer GCPC 2019 Solutions



H – Historical Maths

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Alexander Dietsch GCPC 2019 Solutions



H – Historical Maths

Problem
Given a multiplication f1 · f2 = p of unknown base b, what could a
possible b be?

Insight
If f1 and f2 are multiplied in a base greater than b, the
resulting product is always smaller than p in this base.
If f1 and f2 are multiplied in a base smaller than b, the
resulting product is always greater than p in this base.
Since all digits are smaller than or equal to 230 and we have
at most 1 000 digits, b must be smaller than 261.

Problem Author: Alexander Dietsch GCPC 2019 Solutions



H – Historical Maths

Problem
Given a multiplication f1 · f2 = p of unknown base b, what could a
possible b be?

Insight
If f1 and f2 are multiplied in a base greater than b, the
resulting product is always smaller than p in this base.
If f1 and f2 are multiplied in a base smaller than b, the
resulting product is always greater than p in this base.
Since all digits are smaller than or equal to 230 and we have
at most 1 000 digits, b must be smaller than 261.

Problem Author: Alexander Dietsch GCPC 2019 Solutions



H – Historical Maths

Solution
Write a multiplication routine that can multiply two numbers
in a given base.
Use binary search to determine the correct base.

Factorisation approach only leads to accepted solution if a
fast factorisation algorithm is used.

Problem Author: Alexander Dietsch GCPC 2019 Solutions



H – Historical Maths

Solution
Write a multiplication routine that can multiply two numbers
in a given base.
Use binary search to determine the correct base.
Factorisation approach only leads to accepted solution if a
fast factorisation algorithm is used.

Problem Author: Alexander Dietsch GCPC 2019 Solutions



L – Long-Exposure Photography

0 50 100 150 200 250 300
0

2

4

6

8

correct
wrong-answer
timelimit
run-error
compiler-error
no-output
frozen

Problem Author: Philipp Reger GCPC 2019 Solutions



L – Long-Exposure Photography

->

Problem
A white surface with n black rectangles is rotated around its origin
fast. A photo is taken of the entire rotation. Determine the ‘black’
surface area of the photo (parts covered by rectangles throughout
the entire rotation) as well as the ‘grey’ surface area (parts covered
by rectangles through some but not all of the rotation).

Problem Author: Philipp Reger GCPC 2019 Solutions



L – Long-Exposure Photography

Solution (Variant 1)
As a circle’s radius increases, the number of 1× 1 squares
intersected by its outline only increases for every new integer.
Number of intersected 1× 1 squares for radius r is 8 · brc+ 4.
Squares can be grouped by the ‘diagonal’ they lie on.

Problem Author: Philipp Reger GCPC 2019 Solutions



L – Long-Exposure Photography

Solution (Variant 1)
Each rectangle is essentially a set of intervals, one interval per
affected diagonal.
For every integer radius, use the interval entry and exit points
(up to the next integer) to compare the covered diagonals to
the required number of 1× 1 squares.
Add surface areas of the resulting black and grey ‘rings’ to the
respective total.

Problem Author: Philipp Reger GCPC 2019 Solutions



L – Long-Exposure Photography

Solution (Variant 2)
Do coordinate compression, creating an approximately n × n
grid.
Each rectangle covers some fields in the grid. Mark those as
black. All unmarked fields are white. (O(nwh))
Fields reach minimal/maximal distance to the centre at a
vertex or at x = 0 or y = 0. Thus, we can calculate the
distance interval this field covers.
Sort and merge black and white intervals (O(n2 log(n)) for n2

intervals). If black and white intervals overlap, the
overlapping part is grey.

Optimization
The second step can be optimized to run in O(n2 log(n)) using a
sweepline approach with a segment tree. This was not required.

Problem Author: Philipp Reger GCPC 2019 Solutions



L – Long-Exposure Photography

Solution (Variant 2)
Do coordinate compression, creating an approximately n × n
grid.
Each rectangle covers some fields in the grid. Mark those as
black. All unmarked fields are white. (O(nwh))
Fields reach minimal/maximal distance to the centre at a
vertex or at x = 0 or y = 0. Thus, we can calculate the
distance interval this field covers.
Sort and merge black and white intervals (O(n2 log(n)) for n2

intervals). If black and white intervals overlap, the
overlapping part is grey.

Optimization
The second step can be optimized to run in O(n2 log(n)) using a
sweepline approach with a segment tree. This was not required.

Problem Author: Philipp Reger GCPC 2019 Solutions


